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A model of a partially deformable Euler disk is presented that allows transverse vibrations to be treated with
the techniques of classical analytical mechanics. The model clearly shows that the increasing audible frequency
produced during motion can be directly related to the forcing effect of the reaction and the angular velocity of
the contact point. The material of the disk seems to play a role in affecting the intensity and quality of the
sound, but not its pitch. Moreover, the friction force grows rapidly with the decline of the disk, thus causing the
slipping that is partially responsible for the abrupt end of the motion. The model also supports the conjecture
fP. Kessler and O. M. O’Reilly, Regul. Chaotic Dyn.7, 49 s2002dg that the vibrations themselves contribute to
this phenomenon by causing a loss of contact with the surface at small angles of inclination.
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I. INTRODUCTION

The familiar phenomenon of a coin rolling on a table
gives rise to one of the classical problems of analytical me-
chanics with nonholonomic constraintsssee, e.g.,f1gd. A toy
of recent invention, known as Euler’s diskf2g, exhibits all
the interesting features of this phenomenon. In particular,
after a prolonged spinning motion, emitting a whirring sound
of increasing frequency in the process, the disk comes to an
abrupt stop. An article by Moffattf3g proposing air viscosity
as a mechanism for energy dissipation in Euler’s disk gener-
ated numerous responses investigating aspects of his conjec-
ture. Papers have been published supporting that solid fric-
tion, rather than viscosity in the air between the disk and
surface, is the major source of energy dissipationssee Refs.
f4–8gd. Various articles also exist on the dynamics of the disk
motion itself ssee Refs.f9–13gd. For the sake of brevity, the
term “Euler’s disk” is used in this paper to describe the gen-
eral problem of rolling of a thin disk on a horizontal plane
and does not refer to the specific geometry of the commer-
cialized Euler’s disk toyf2g.

Kessler and O’Reillyf12g have presented a model of Eu-
ler’s disk with an energy dissipation mechanism that consid-
ers both sliding and rolling friction. In the concluding com-
ments, their article addresses two features of Euler’s disk that
merit attention. The first feature is the continuously increas-
ing audible frequency that the disk produces as the angle of
inclination declines. The model considered inf12g, however,
cannot capture the sound produced by the vibrations of the
disk since it is based on rigid-body modeling. Nevertheless,
the reaction force reported in the paperscyclical and continu-
ously increasing in frequencyd is postulated as a measure of
the forcing experienced by the disksand surfaced that can
subsequently excite vibration and produce sound. The second

feature is the abrupt stop of the motion of the disk. Kessler
and O’Reilly f12g conjecture that, as the disk declines, the
vibrations of the disk and surface eventually cause the disk
to lose contact with the surface, thus abruptly ending the
motion of the disk. They suggest that a deformable model
for both the disk and surface is required to prove their
conjecture.

Although experiments have been conducted to record the
noise emitted from Euler’s diskf11g, to the best of our
knowledge an analytical model that incorporates mechanical
vibrations has not been proposed. In this paper, therefore, we
attempt to address analytically the two features of Euler’s
disk underlined by Kessler and O’Reillyf12g. We suggest
that in order to achieve a qualitatively correct description it
is enough to use a single additional degree of freedom to
represent the bending deformation of the disk. This approach
is similar to that used in the theory of the so-called pseudo-
rigid bodiesf14,15g. When applied to a rolling disk, how-
ever, the pseudorigid-body formulation allows for in-plane
vibrations of the disksas shown in previous work by Cohen
and Sunf16g and Epstein and Defazf17gd, but rules out the
description of transverse bending vibrations. Our generaliza-
tion, on the other hand, allows for transverse bending while
preserving the main advantage of the pseudorigid approach:
namely, a treatment within the realm of classical analytical
mechanics rather than continuum mechanics. In other words,
the model leads to a system of ordinary, instead of partial,
differential equations. We hope that our model, albeit of par-
tial deformability, will shed new light on some important
aspects of the deformable Euler disk that have not been con-
sidered to date in the literature.

In Sec. II we derive the equations of motion and the con-
straints of the system, including the influence of rolling fric-
tion. In Sec. III we report and discuss the results of numeri-
cal simulations for our model under different types of rolling
motion and their relation to the two points raised by Kessler
and O’Reilly f12g. In Sec. IV we summarize the conclusions
of our investigation.

*Electronic address: roberto_villanueva@yahoo.com
†Electronic address: mepstein@ucalgary.ca

PHYSICAL REVIEW E 71, 066609s2005d

1539-3755/2005/71s6d/066609s7d/$23.00 ©2005 The American Physical Society066609-1



II. DEFORMABLE DISK MODEL

A disk of constant thicknessc and radiusR swith c/R
!1d is assumed to lie in a reference space with Cartesian
coordinatessX,Y,Zd. The geometric center of the disk is at
the origin and its middle surface lies in the planeZ=0 sFig.
1d. A deformation consists of a smooth placement of this disk
in physical space, with coordinatessx,y,zd. Assuming that
the in-plane stiffness of the disk is much greater than its
bending stiffness and recognizing that the bending deforma-
tions are likely to be small in comparison with the radius of
the disk, we conclude that the most general deformation of
interest consists of a field of small displacements normal to
the disk superimposed on a general rigid-body motion of the
latter. The generalized notion of pseudorigidity consists in
further limiting the normal displacement field by prescribing
that it must belong to a finite-parameter family of functions
s“shape functions”d. While this idea goes back to Rayleigh
f18g, it can also be considered as an example of a generalized
constrained Cosserat pointf19g.

In the simplest possible version, the normal displacement
field is controlled by a single shape function, which we will
assume to be the following paraboloid:

fsX,Yd = 1 −
1

R2sX2 + Y2d. s1d

Accordingly, the actual normal displacementw sFig. 2d is
determined by assmalld time-dependent parameterw1std, as
follows:

w = w1stdfsX,Yd. s2d

Denoting bysx1,y1,z1d the spatial location of the center
of the disk and adopting a 3-1-3 set of Euler anglessf ,u ,cd,
also referred to as “type-II” Euler anglesf20g, the point
sX,Y,Zd of the reference disk is mapped to the point in the
deformed disk with spatial coordinatessx,y,zd given by

3x

y

z
4 = 3x1

y1

z1
4 + 3a11 a12 a13

a21 a22 a23

a31 a32 a33
43 X

Y

Z + w1stdfsX,Yd
4 , s3d

where the rotation matrix is defined as

3a11 a12 a13

a21 a22 a23

a31 a32 a33
4 = 3cosf − sinf 0

sinf cosf 0

0 0 1
431 0 0

0 cosu − sinu

0 sinu cosu
4

33cosc − sinc 0

sinc cosc 0

0 0 1
4 . s4d

We are left with seven independent generalized coordinates
as functions of time to fully describe the motion of the de-
formed disk: namely,x1, y1, z1, f, u, c, andw1.

To complete our model, we assume linear isotropic elas-
ticity and constant density throughout the disk. The total ki-
netic energy of the disk is then given by

T =E E E 1

2
rsẋ2 + ẏ2 + ż2ddXdYdZ,

wherer is the density and where overdots indicate deriva-
tives with respect to timet. Making the required substitu-
tions, exploiting the thin-disk assumption, and carrying out
the integration yields

T =
rcpR2

24
h3R2fȧ11

2 + ȧ12
2 + ȧ21

2 + ȧ22
2 + ȧ31

2 + ȧ32
2 g + 12fẋ1

2 + ẏ1
2

+ ż1
2g + 4fsw1ȧ13 + ẇ1a13d2 + 3ẋ1sw1ȧ13 + ẇ1a13dg

+ 4fsw1ȧ23 + ẇ1a23d2 + 3ẏ1sw1ȧ23 + ẇ1a23dg

+ 4fsw1ȧ33 + ẇ1a33d2 + 3ż1sw1ȧ33 + ẇ1a33dgj. s5d

The potential energy due to gravity is easily evaluated as

Vg =E E E rgzdXdYdZ=
rcpR2

2
fw1a33 + 2z1g, s6d

whereg denotes the acceleration of gravity. Using standard
assumptions in thin-plate elastodynamicsf21g and denoting
by E and n, respectively, Young’s modulus and Poisson’s
ratio, the stored elastic energy associated with the bending of
the disk is obtained as

FIG. 1. Reference space: disk configuration in the “neutral”
position.

FIG. 2. Bending deformation of the disk.
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Ve =E E Ec3

24s1 − n2dHS ]2w

]X2 +
]2w

]Y2D2

− 2s1 − ndF ]2w

]X2

]2w

]Y2 − S ]2w

]X ] Y
D2GJdXdY

=
pEc3w1

2

3s1 − ndR2 . s7d

To impose the rolling constraint, we start by locating the
point P along the perimeter occupying the lowest spatial po-
sition. Writing the parametric equations of the disk perimeter
asX=Rsing , Y=−Rcosg , Z=0, whereg is an angular pa-
rameter, a straightforward application of Eq.s3d yields the
following expression for thez coordinate of points along the
circumference:

z= z1 + a31Rsing − a32Rcosg.

Setting]z/]g=0 and reading offa31 anda32 from Eq. s4d, it
follows thatgP=−c, as expected on intuitive grounds. Since
the condition of contact stipulates the vanishing of thez co-
ordinate of the lowest point, we obtain the followingsholo-
nomicd constraint:

z1 = Rsinu, z1 . 0,

which can also be written as

z1
2 = R2sa31

2 + a32
2 d. s8d

Note that, by virtue of the assumed thinness, we impose the
constraint at the middle surface of the disk. To enforce the
no-slip condition of rolling, we further prescribe]x/]t=0
and]y/]t=0 at g=gP. Using these conditions together with
the result of Eq.s8d yields the following non-holonomic
constraints:

ẋ1z1 = R2sȧ11a31 + ȧ12a32d, s9d

ẏ1z1 = R2sȧ21a31 + ȧ22a32d. s10d

Dissipation due to friction is modeled after the concept of a
dissipative moment presented by Kessler and O’Reillyf12g.
The dissipative momentM f is conveniently expressed as

M f = − o
i=1

3

âidisgnsv · âid, s11d

where v is the disk rotational velocity and the basis

â1, â2, â3 is defined in terms of the basisî , ĵ , k̂ of the
x-y-z coordinate system, obtained after the first Euler rota-
tion f, as

3â1

â2

â3
4 = 3 cosf sinf 0

− sinf cosf 0

0 0 1
43 î

ĵ

k̂
4 . s12d

The parametersdi are determined by factors such as the fric-
tion coefficient, the normal surface reaction force, and the
contact area between the disk and surface. However, as we
are not investigating the mechanism of rolling friction and

are imposing a dissipative moment only to capture the quali-
tative aspects of dissipation in our model, we make the sim-
plification that eachdi is constant.

Since the dissipative frictional forces do not derive from a
potential, they must be included in Lagrange’s equations of
motion as generalized forces whose expressions are derived
by means of the principle of virtual workf20g:

dW= M f · êfdf + M f · êudu + M f · êcdc,

where the unit vectorsêf, êu, and êc are defined in the di-
rections of their respective rotation axesf20g. The resulting
generalized forces are

Qf = M f · êf, Qu = M f · êu, Qc = M f · êc.

Similarly, dissipation due to structural damping in the disk
material is considered by including a nonconservative gener-
alized force −bẇ1 in the equation of motion forw1. Quanti-
tative investigation of the value ofb is outside the scope of
this paper as we are only interested in capturing the qualita-
tive features of structural damping.

We form the LagrangianL=T−(Vg+Ve) and develop the
equations of motion from an analytical approach. Constraints
are enforced as generalized forces through the use of
Lagrange multipliersl1, l2, and l3, corresponding to Eqs.
s8d, s9d, ands10d, respectively. The quantitiesl1, l2, andl3
are functions of time and represent thex, y, and z compo-
nents, respectively, of the reaction force in physical space
coordinates. The equations of motion for the unknown func-
tions x1, y1, z1, f, u, c, w1, l1, l2, andl3 are

d

dt
S ]L

] ẋ1
D −

]L

]x1
= l1, s13d

d

dt
S ]L

] ẏ1
D −

]L

]y1
= l2, s14d

d

dt
S ]L

] ż1
D −

]L

]z1
= l3, s15d

d

dtS ]L

]ḟ
D −

]L

]f
= Rcosusl1cosf + l2sinfd + M f · êf,

s16d

d

dtS ]L

] u̇
D −

]L

]u
= Rs− l1sinf sinu

+ l2cosf sinu − l3cosud + M f · êu,

s17d

d

dtS ]L

]ċ
D −

]L

]c
= Rsl1cosf + l2sinfd + M f · êc, s18d
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d

dt
S ]L

]ẇ1
D −

]L

]w1
= − bẇ1. s19d

When supplemented with the time-differentiated forms of
Eqs. s8d, s9d, and s10d, these equations constitute an
algebraic-differential system defining our model of the de-
formable rolling disk.

III. NUMERICAL STUDIES

To carry out numerical simulations efficiently, the equa-
tions are nondimensionalized using the following variables:

x̃1 = x1/R, ỹ1 = y1/R, z̃1 = z1/R, f̃ = f; ũ = u,

c̃ = c, w̃1 = w1/R, t̃ = kt, l̃i = li/sERcd,

g̃ = g/sk2Rd,

where the “stiffness” parameterk is defined as

k =Î En

rcR
. s20d

All simulations were carried out usingMATHEMATICA .

A. “Pseudosteady” motion

The initial conditions for steady motion of a rigid rolling
disk have been previously investigatedf10g. To initiate a
“pseudosteady” type of motionsi.e., motion that is otherwise
steady if not for the energy dissipation due to friction and
vibration due tow1d, the same initial conditions will be ap-
plied. The required initial conditions are

ḟ2 =
g cotu

1

4
Rcosu +

3

2
b

, ċ = − ḟS b

R
+ cosuD, u̇ = 0;

b . −
1

6
Rcosu,

whereb is the initial horizontal distance fromsx1,y1,z1d to
the center of the circle traced out byP during the motion.

Example results are given for the following realistic con-
ditions: k=38 383 s−1, E=193 GPa,r=7860 kg/m3, n
=0.30,R=0.5 m,c=0.01 m,g=9.81 m/s2, initial coordi-
nates ofP=s1,1,0dm, initial b=0 m, initial f=0°, initial u
=20°, initial c=0°, initial w1=0, d1=30 N m, d2=3 N m,
d3=0 N m, andb=100 kg/s. Initial angular velocities are
determined from the “pseudosteady” conditions above.

Figure 3 shows that in our deformable model, vibrations
of the disk are indeed initiated. A plotsnot shownd of w1/R
over a short time period reveals two prevalent frequencies.
The first is the “forced frequency” observable in Fig. 3. This
forced frequency increases as the angle of inclination of the
disk u decreasessi.e., ast increasesd. Conjecturing that the
forced frequency would naturally arise from the time rate of
change ingP smeasure of “material” position of the contact
point Pd and recalling thatgP=−c, we indeed find that the

value of ċ sFig. 4d correlates very well with the instanta-
neous frequencies inferred from Fig. 3 throughout the time
period analyzed. The second frequency observed is the natu-
ral frequency of the disksnot observable in Fig. 3, as it is
much higher than the forced frequencyd. The strength of the
natural frequency is much smaller than the strength of the
forced frequencysand it is in practice further mitigated by
the structural damping of the diskd. Although it would be
interesting to analyze and compare Fig. 4 with the exponen-
tial fitting proposed by Capset al. f8g, the fact that our dis-
sipation model is so coarsesconstant momentsd and that we
did not pursue the detailed motion up to the last stages of

FIG. 3. Plot ofw1/R from t=0 to 16 s.

FIG. 4. Plot ofċ /k from t=0 to 16 s.

FIG. 5. Plot of the nondimensionalized magnitude of the friction
force from t=0 to 16 s.
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decline would make this exercise fruitless. Figures 5 and 6
show that both the friction and normal reaction forces on the
disk increase in frequency ast increases. The frequency
observed in these figures is, again, the forced frequency. We
also note that Fig. 5 shows the magnitude of the friction
force increasing with time. Figure 7 shows the movement of
P over time is roughly circular, as expected with pseu-
dosteady motion.

The first interesting feature of the Euler’s disk problem
raised by Kessler and O’Reillyf12g is the increasing audible
frequency produced during the motion. With our deformable
model for the disk, we can infer that the increasing forced
frequency observed in the disk vibration and in the reaction
force is a measure of the sound of increasing audible fre-
quency produced during the motion. Although we assumed a
rigid rolling surface, the forced frequency observed in the
reaction force can be expected to play a similar role in in-
ducing vibration in an actual deformable surface.

The second feature raised by Kessler and O’Reillyf12g is
the abrupt end to the motion of the disk. While some authors
f5,6g have reported experimental work showing rolling fric-
tion as the main factor of energy dissipation in the early
stages of motion, experiments by Capset al. f8g reveal that
dissipation due to slipping is present in the latter stages of
motion. The rapidly increasing magnitude of the friction
force with time sFig. 5d suggests that a threshold value for

the friction force will be reached, beyond which the disk
slips. Slipping might also be induced by the vibrations them-
selves through loss of contact with the surface, occurring
more frequently and prominently at very small angles of in-
clination near the end of motion. The vibrations observed in
our model appear to describe the vibrations conjectured by
Kessler and O’Reillyf12g as causing the abrupt end to the
motion.

Another interesting observation is the effect of stiffness
on the vibration. For the same model parameters as used in
Fig. 3, except that Young’s modulus is reduced by one-half,
Fig. 8 shows that the magnitude of the vibration increases.
Nevertheless, the forced frequency observed in the vibration
of the disk remains the same. This shows that the material
seems to play a role in affecting the intensity and quality of
the sound produced, but not its pitch.

B. Typical nonsteady motion

As pseudosteady initial conditions are not simple to
implement in reality, we consider a typical nonsteady initial
motion. This motion is based on imposing initial conditions
of rotation about an axis running throughP and sx1,y1,z1d
and has been previously considered by Kessler and O’Reilly
f12g. A unit vector,êP/1, is defined to describe this axis.

Example results are given for the following con-
ditions: k=38 383 s−1, E=193 GPa,r=7860 kg/m3, n
=0.30,R=0.5 m,c=0.01 m,g=9.81 m/s2, initial coordi-

FIG. 6. Plot of nondimensionalized normal reaction force from
t=0 to 16 s.

FIG. 7. x-y plot of P from t=0 to 16 s.

FIG. 8. Plot ofw1/R with k=27141 fromt=0 to 8 s.

FIG. 9. v=−1.5êP/1; plot of w1/R from t=0 to 16 s.
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nates ofP=s1,1,0dm, initial f=0°, initial u=20°, initial c
=0°, initial w1=0, d1=15 N m, d2=1.5 N m, d3=0 N m,
and b=100 kg/s. An initial angular velocity of v
=−1.5êP/1 rad/s is studied.

A key observation from Figs. 9, 10, and 11 is that the
typical nonsteady initial motion studied degenerates into
pseudosteady motion as the angle of inclination of the disku
decreasessi.e., ast increasesd. This corresponds well with the
common observation of a coin or a dish eventually falling
into a pseudosteady type of motion regardless of its initial
conditions when first spunsreported experimentally by
Easwaret al. f6gd. At the start of the motion, the “forced
frequency” observed is related to the nonsteady rising and
falling of the disk. The magnitudes of the initial vibrations
decrease ast increases. By the end of the motion, the “forced

frequency” observed tracks well withċ as already observed
in the pseudosteady motion. In addition, as with the pseu-
dosteady motion, the natural frequency of the disk is weakly
present in the vibration. Thus, the comments made earlier on
the interesting features of Euler’s disk raised by Kessler and
O’Reilly f12g also apply to the study of a typical nonsteady
motion.

IV. CONCLUSION

A deformable model of the Euler’s disk problem was de-
veloped by permitting the disk to deform in a prescribed
shape. This approach allows the problem to be treated with
the techniques of classical analytical mechanics. We at-
tempted to address two interesting features of the Euler’s

disk problem raised by Kessler and O’Reillyf12g. Regarding
the first feature—namely, the increasing audible frequency
produced during motion—we observed that our deformable
model captured a forced frequency in the disk vibration and
in the reaction force that corresponds with the angular veloc-
ity of the contact point of the disk. This vibration and reac-
tion force response can be interpreted as a measure of the
sound produced during motion. The material seems to play a
role in affecting the intensity and quality of the sound, but
not its pitch. With respect to the second feature, the abrupt
end to the motion of the disk, we observed friction force
responses that support observations by othersf8g of slipping
occurring near the end of motion. The vibrations observed
also support the conjecture by Kessler and O’Reillyf12g that
vibrations could cause a loss of contact with the surface at
small angles of inclination, contributing to an abrupt end of
the motion. The concepts in this deformable model can be
expanded upon to include flexibility in the rolling surface.
Moreover, the methods introduced for prescribing a de-
formed shape for the disk can be used to explore higher
modes of vibration excited in the disk. Carrying out these
improvements may provide additional insight into the de-
tailed mechanism and measure of sound produced during
motion, but the general conclusions gathered from the
present model are not likely to be affected.
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