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Vibrations of Euler’s disk
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A model of a partially deformable Euler disk is presented that allows transverse vibrations to be treated with
the techniques of classical analytical mechanics. The model clearly shows that the increasing audible frequency
produced during motion can be directly related to the forcing effect of the reaction and the angular velocity of
the contact point. The material of the disk seems to play a role in affecting the intensity and quality of the
sound, but not its pitch. Moreover, the friction force grows rapidly with the decline of the disk, thus causing the
slipping that is partially responsible for the abrupt end of the motion. The model also supports the conjecture
[P. Kessler and O. M. O'Reilly, Regul. Chaotic Dy#,. 49 (2002 ] that the vibrations themselves contribute to
this phenomenon by causing a loss of contact with the surface at small angles of inclination.
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I. INTRODUCTION feature is the abrupt stop of the motion of the disk. Kessler

- ) ] and O'Reilly [12] conjecture that, as the disk declines, the

_ The familiar phenomenon of a coin rolling on a table ihrations of the disk and surface eventually cause the disk

gives rise to one of the cl_assmal pr_oblems of analytical M€ty |ose contact with the surface, thus abruptly ending the

chanics W!th nor_1ho|on0mm constralr{'see_, e.g.[l])_. Atoy motion of the disk. They suggest that a deformable model

of recent invention, known as Euler's di¢k], exhibits all ¢, \oh the disk and surface is required to prove their

the interesting features of this phenomenon. In partiCUIarconjecture

aftgr a prqlonged spinning motion, emitting & yvhlrrlng sound Although experiments have been conducted to record the
of increasing frequency in the process, the disk comes to ag,

b A icle by MoffafG ) S . ise emitted from Euler’s disk1l], to the best of our
abrupt stop. An article by Moffaff3] proposing air viscosity  ,qjedge an analytical model that incorporates mechanical
as a mechanism for energy dissipation in Euler’s disk gene

: A . >Nibrations has not been proposed. In this paper, therefore, we
ated numerous responses Investigating aspects of his .Conj.e&'tempt to address analytically the two features of Euler’s
ture. Papers have _been. quhshed supporting that S.Ol'd TMiGisk underlined by Kessler and O'Reillj12]. We suggest
tlonf, rather ft1han viscosity In tfhe ar b%twe_en _the ?Q'SI; aNGhat in order to achieve a qualitatively correct description it
surface, is the major source of energy dissipatsee Refs. 5 anough to use a single additional degree of freedom to

[4-8]). Various articles also exist on the dynamics of the diskq ; ; . :
= . present the bending deformation of the disk. This approach
mOt'Op |tsel,f(s§e ,I’Q_efs[g—l?,]) : Eor the sake of brewty, the is similar to that used in the theory of the so-called pseudo-
term “Euler's disk IS used in thls paper to despnbe the 9€Ntigid bodies[14,15. When applied to a rolling disk, how-
eral problem of rolling of a thm_ .d'Sk on a horizontal plane ever, the pseudorigid-body formulation allows for in-plane
and does not refer to the specific geometry of the COmMelgiy ations of the diskas shown in previous work by Cohen
C|aI|zed|EuIerds d',Sk _t|<|)3[2]. h d del of and Sur[16] and Epstein and Defd27]), but rules out the
,Kes.s eran O'Rei ){12]. ave presented a model o E”_' description of transverse bending vibrations. Our generaliza-
ler's disk with an energy dissipation mechanism that Cor‘S"dfion, on the other hand, allows for transverse bending while

ers bOthhSI.'dmg. elmddrglllng f”Ct'Onf' In the cc])cnézllljd|’rlgdf:c:(mr-1 reserving the main advantage of the pseudorigid approach:
ments, their article addresses two features of Euler's disk thaf, ey 4 treatment within the realm of classical analytical

merit attention. The first feature is the continuously increas- echanics rather than continuum mechanics. In other words
@ng_aud_ible frequency that the disk p_roduces as the angle Ghe model leads to a system of ordinary, instead of partial,
inclination declines. The model conS|dered]:2]_, hoyvever, differential equations. We hope that our model, albeit of par-
cannot capture the sound produced by the vibrations of thﬁa| deformability, will shed new light on some important

dr']Sk since IthS based on (rjlgld-rl])ody moo:_ehr}g. ﬁevert_helessaspects of the deformable Euler disk that have not been con-
the reaction force reported in the pageyclical and continu-  Giiere J 1o date in the literature.

ously increasing in frequengys postulated as a measure of |, gac || we derive the equations of motion and the con-
the forcing experienced by the digknd surfacgthat can Sé)

R raints of the system, including the influence of rolling fric-
subsequently excite vibration and produce sound. The seconh, ‘| sec. 11l we report and discuss the results of numeri-

cal simulations for our model under different types of rolling

motion and their relation to the two points raised by Kessler
*Electronic address: roberto_villanueva@yahoo.com and O'Reilly[12]. In Sec. IV we summarize the conclusions
TElectronic address: mepstein@ucalgary.ca of our investigation.
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FIG. 1. Reference space: disk configuration in the “neutral” FIG. 2. Bending deformation of the disk.
position.
a; a; a cos¢ -sing 0|1 O 0
Il. DEFORMABLE DISK MODEL 1o T 059 4 .
8y, 8y A |=|sing cos¢p 0]/0 cosfd -sind
A _disk of constan'_[ thickness and radiusR (vyith c/R lagy as as 0 0 1110 sing cose
<1) is assumed to lie in a reference space with Cartesian )
coordinategX,Y,Z). The geometric center of the disk is at cosy —sinyg 0
the origin and its middle surface lies in the plane0 (Fig. X|sing cosy O]. (4)
1). A deformation consists of a smooth placement of this disk 0 0 1

in physical space, with coordinat€s,y,z). Assuming that

the "."p'a”.e stifiness of the.d.isk is much greater than itsWe are left with seven independent generalized coordinates
bending stiffness and recognizing that the bending deformaq f,,tions of time to fully describe the motion of the de-
tions are likely to be small in comparison with the radius Offormed disk: namelyxy, yu, 21, b, 0, i, andw,

the disk, we conclude that the most general deformation of | complete our model, we assume linear isotropic elas-

interest consists of a field of small displacements normal t‘?icity and constant density throughout the disk. The total ki-
the disk superimposed on a general rigid-body motion of thenetiC energy of the disk is then given by
latter. The generalized notion of pseudorigidity consists in

further limiting the normal displacement field by prescribing

that it must belong to a finite-parameter family of functions T= f f f Ep(x2+y2+ 2)dxdYdz

(“shape functions). While this idea goes back to Rayleigh 2

[18], it can also be considered as an example of a generalized

constrained Cosserat poifit9]. wherep is the density and where overdots indicate deriva-
In the simplest possible version, the normal displacementives with respect to timé. Making the required substitu-

field is controlled by a single shape function, which we will tions, exploiting the thin-disk assumption, and carrying out

assume to be the following paraboloid: the integration yields
1 . 2
=1-— cR . . . . . . . .

=1 Y. O 7= DO (R + 8, 28+ 8+ 2+ )4 1056+ 3
Accordingly, the actual normal displacement(Fig. 2) is . - - 2 L o - -
determined by dsmal) time-dependent parametes(t), as 4]+ A (Wadgs + Wiaeg)® + Fa(Wadss + Wass)]
follows: + A (Wypg + WyBpg)* + 3Y1(Widpg + Wypg) ]

w=w;(H)f(X,Y). (2) + 4] (Wyags + Wyage)® + 373(Wy 835+ Wyag3) |} (5

Denoting by(x,y1,2)) the spatial location of the center The potential energy due to gravity is easily evaluated as
of the disk and adopting a 3-1-3 set of Euler andléso, ¢), P 9y g y y

also referred to as “type-1I” Euler angld0], the point

2
(X,Y,2) of the reference disk is mapped to the point in the Vg:f J J pgzdXdYdz m[wla33+ 2], (6)
deformed disk with spatial coordinatés,y,z) given by 2

X X1 a1 312 a3 X whereg denotes the acceleration of gravity. Using standard
y|=|ys [+|ay ap an Y , (3) assumptions in thin-plate elastodynamjed| and denoting
by E and v, respectively, Young’s modulus and Poisson’s
+
2] la] (3 3 2 ][Z+wiOiXY) ratio, the stored elastic energy associated with the bending of
where the rotation matrix is defined as the disk is obtained as

066609-2



VIBRATIONS OF EULER’S DISK PHYSICAL REVIEW E71, 066609(2009

Ec3 PwW Pw\2? are imposing a dissipative moment only to capture the quali-

Ve=f J m (ﬁ + ﬁ) tative aspects of dissipation in our model, we make the sim-
plification that eachd, is constant.

- V){az_waz_w ~ ( Pw )2} }dXdY Since the dissipative frictional forces do not derive from a
IX2aY2 \gXaY potential, they must be included in Lagrange’s equations of

motion as generalized forces whose expressions are derived

_ mECW; @) by means of the principle of virtual worfkRO0]:

3(1-v)R?’

To impose the rolling constraint, we start by locating the
point P along the perimeter occupying the lowest spatial po- . Ao N ' . -
sition. Writing the parametric equations of the disk perimeterrvé Z(teiroen;hgf L':rTgirvfgozﬁiv?rgg?igﬁ Zﬁ&?ﬂgﬁg Irgsfgliindl
asX=Rsiny, Y=-Rcosy, Z=0, wherey is an angular pa- P ' 9

rameter, a straightforward application of E®) yields the generalized forces are

following expression for the coordinate of points along the B R _ N _ .
circumference: Qy=M¢-&4 Qp=M;-&, Q,=M;-€.

SW=Mq - 8,0+ M;-8,00+M;-&,50,

z=27,+azRsiny-agR cosy. Similarly, dissipation due to structural damping in the disk
material is considered by including a nonconservative gener-
alized force 8w, in the equation of motion fow,. Quanti-
tative investigation of the value @ is outside the scope of
this paper as we are only interested in capturing the qualita-
tive features of structural damping.

We form the Lagrangiah =T-(Vy+V,) and develop the

Settingdz/ 9y=0 and reading offi3; andag, from Eq. (4), it
follows that yp=—1, as expected on intuitive grounds. Since
the condition of contact stipulates the vanishing of theo-
ordinate of the lowest point, we obtain the followiigolo-
nomic) constraint:

z7=Rsing, z >0, equations of motion from an analytical approach. Constraints
_ _ are enforced as generalized forces through the use of
which can also be written as Lagrange multipliers\;, \,, and\s, corresponding to Egs.

2=RYal,+a,). 8) (8), (9), a_nd(lO), r_espectively. The quantities;, \,, and\5
1 817 Te2 are functions of time and represent tkey, andz compo-
Note that, by virtue of the assumed thinness, we impose theents, respectively, of the reaction force in physical space
constraint at the middle surface of the disk. To enforce thecoordinates. The equations of motion for the unknown func-
no-slip condition of rolling, we further prescribéx/dt=0  tionsxy, Y1, Z1, &, 0, ¥, Wy, N1, Ny, and\5 are

anddy/dt=0 at y=yp. Using these conditions together with

the result of Eq.(8) yields the following non-holonomic d(dL L
constraints: dt\ox) " ox A1, (13
X121 = R¥(&q1831 + 81283), 9
o dfa) o o 14
Y121 = R(axa3; + ax83)). (10) dt\ay,) “ay, 2 (14
Dissipation due to friction is modeled after the concept of a
dissipative moment presented by Kessler and O’'R¢IlB). d/ oL L
The dissipative momeritl; is conveniently expressed as —(—> - —=\g, (15)
dt\oz,/ dz
3
M¢=-2> adisgne - &), (1)
i=1 d/dL aL . o
) _ _ _ ) —| — | — = =Rcosf(\1C0S¢ + \;Sin ) + M - €,
where w is the disk rotational velocity and the basis  dt\yp/ d¢
a,, &, 43 is defined in terms of the basis j, k of the (16)
x-y-z coordinate system, obtained after the first Euler rota-
tion ¢, as
s (L) - _R-nsingsing
& cos¢ sing 0| i dt\ gp) 96 (=Assin ¢ sin
a |=|-sing cos¢ O|] 12 )
2 ¢ ¢ J (12 + N\5C0S ¢ Sin 6 — \3c0S6) + M - &,
as 0 0 1]k

(17
The parameterd, are determined by factors such as the fric-
tion coefficient, the normal surface reaction force, and the d (aL) IL

contact area between the disk and surface. However, as we =~ —( — | - — =R(\,C0S¢ + \;Sin ) + M- &, (18)
are not investigating the mechanism of rolling friction and dt Ay I
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(o)

When supplemented with the time-differentiated forms of
Egs. (8), (9), and (10), these equations constitute an
algebraic-differential system defining our model of the de-
formable rolling disk.

d

diat
dt

Wy

aL

o~ (19)

~ Wy

IIl. NUMERICAL STUDIES

To carry out numerical simulations efficiently, the equa-
tions are nondimensionalized using the following variables:

% =x/R, Vi=VJ/R Z=z/R  $=¢; =0,
Y=y, W=wy/R T=kt X\ =\/(ERQ,
§=9/(KR),

where the “stiffness” parametéris defined as
\/E
pCR

All simulations were carried out USINGATHEMATICA .

k

(20)

A. “Pseudosteady” motion

The initial conditions for steady motion of a rigid rolling
disk have been previously investigatgtio]. To initiate a
“pseudosteady” type of motiofi.e., motion that is otherwise
steady if not for the energy dissipation due to friction and
vibration due tow;), the same initial conditions will be ap-
plied. The required initial conditions are

gcoté

= W —¢(9+cos¢9> 6=0:
: = : ;

1
—Rcosé+ -b
4 2

1
b>- ER cosd,

whereb is the initial horizontal distance frortx;,y;,z;) to
the center of the circle traced out IB/during the motion.

Kkt
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FIG. 3. Plot ofw;/R from t=0 to 16 s.
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FIG. 4. Plot ofz;///k fromt=0 to 16 s.

Example results are given for the following realistic con-
ditions: k=38 383 5!, E=193 GPa p=7860 kg/ni, v
=0.30,R=0.5m,c=0.01 m,g=9.81 m/¢, initial coordi-
nates ofP=(1,1,0m, initial b=0 m, initial $=0°, initial @
=20°, initial ¢=0°, initial w;=0, d;=30 Nm, d,=3 Nm,
d;=0 N'm, and8=100 kg/s. Initial angular velocities are
determined from the “pseudosteady” conditions above.

Figure 3 shows that in our deformable model, vibrations
of the disk are indeed initiated. A plghot shown of w;/R
over a short time period reveals two prevalent frequencies.
The first is the “forced frequency” observable in Fig. 3. This
forced frequency increases as the angle of inclination of the
disk # decreasesi.e., ast increases Conjecturing that the
forced frequency would naturally arise from the time rate of
change inyp (measure of “material” position of the contact
point P) and recalling thatyp=—¢, we indeed find that the

value of ¢ (Fig. 4) correlates very well with the instanta-
neous frequencies inferred from Fig. 3 throughout the time
period analyzed. The second frequency observed is the natu-
ral frequency of the disknot observable in Fig. 3, as it is
much higher than the forced frequencyhe strength of the
natural frequency is much smaller than the strength of the
forced frequency(and it is in practice further mitigated by
the structural damping of the diskAlthough it would be
interesting to analyze and compare Fig. 4 with the exponen-
tial fitting proposed by Capst al.[8], the fact that our dis-
sipation model is so coargeonstant momentsand that we

did not pursue the detailed motion up to the last stages of

1.0x 10°

8.0x 107

1 1 J
200000 400000 600000

kt

FIG. 5. Plot of the nondimensionalized magnitude of the friction
force fromt=0to 16 s.
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FIG. 6. Plot of nondimensionalized normal reaction force from FIG. 8. Plot ofw;/R with k=27141 fromt=0 to 8 s
t=0to 16 s.

decline would make this exercise fruitless. Figures 5 and &€ friction force will be reached, beyond which the disk

show that both the friction and normal reaction forces on the?IPS: Slipping might also be induced by the vibrations them-
disk increase in frequency asincreases. The frequency selves through loss of contact with the surface, occurring

observed in these figures is, again, the forced frequency. wW&°re frequently and prominently at very small angles of in-
also note that Fig. 5 shows the magnitude of the frictionclination near the end of motion. The vibrations observed in

force increasing with time. Figure 7 shows the movement of’U" model appear to describe the vibrations conjectured by
P over time is roughly circular, as expected with pseu_Kessler and O'Reilly{12] as causing the abrupt end to the

dosteady motion. motion. . . L .
The first interesting feature of the Euler's disk problem Another interesting observation is the effect of stiffness

raised by Kessler and O'Reilfi2] is the increasing audible on the vibration. For the same model parameters as used in

frequency produced during the motion. With our deformablef19- 3, €xcept that Young's modulus is reduced by one-half,

model for the disk, we can infer that the increasing forced 19- 8 shows that the magnitude of the vibration increases.

frequency observed in the disk vibration and in the reactior{\levertheless, the forced frequency observed in the vibration

force is a measure of the sound of increasing audible fre9f the disk remains the same. This shows that the material
eems to play a role in affecting the intensity and quality of

guency produced during the motion. Although we assumed 9
rigid rolling surface, the forced frequency observed in theNe Sound produced, but not its pitch.
reaction force can be expected to play a similar role in in-
ducing vibration in an actual deformable surface.

The second feature raised by Kessler and O'R¢il] is As pseudosteady initial conditions are not simple to
the abrupt end to the motion of the disk. While some aUth0r$mp|ement in reality, we consider a typical nonsteady initial
[5,6] have reported experimental work showing rolling fric- motion. This motion is based on imposing initial conditions
tion as the main factor of energy dissipation in the earlyof rotation about an axis running throughand (x;,y;,2;)
stages of motion, experiments by Cagisal. [8] reveal that  and has been previously considered by Kessler and O'Reilly
dissipation due to slipping is present in the latter stages of12]. A unit vector,&p,, is defined to describe this axis.
motion. The rapldly ianeaSing magnitude of the friction Examp|e results are given for the fo"owing con-
force with time (Fig. 5 suggests that a threshold value for ditions: k=38383 5!, E=193 GPap=7860kg/ni, v

=0.30,R=0.5m,c=0.01 m,g=9.81 m/$, initial coordi-

B. Typical nonsteady motion

y(m)
1.0
15x10°%
1.2x 103
A
"f [~ 9.0 x 10|
1.0 H 00 1.0 ~
| 0-6 ) 1 X (m) g
k j 6.0 x 107}
S 3.0x10* JU J N
O U 1 1 J
0 200000 400000 600000
-1.0b kt
FIG. 7. x-y plot of P from t=0 to 16 s. FIG. 9. w=-1.%p); plot of w;/R from t=0 to 16 s.
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FIG. 10. w=-1.%p; plot of w;/R fromt=0to 4 s. FIG. 11. w=-1.%p,; plot of w;/R from t=4 to 16 s.

nates ofP=(1,1,0m, initial $=0°, initial #=20°, initial ¥  disk problem raised by Kessler and O’'Reill}2]. Regarding
=0°, initial w;=0, d;=15Nm, d,=1.5Nm, d;3=0 Nm, the first feature—namely, the increasing audible frequency
and B=100 kg/s. An initial angular velocity ofw produced during motion—we observed that our deformable
=-1.%p); rad/s is studied. model captured a forced frequency in the disk vibration and
A key observation from Figs. 9, 10, and 11 is that thein the reaction force that corresponds with the angular veloc-
typical nonsteady initial motion studied degenerates intaty of the contact point of the disk. This vibration and reac-
pseudosteady motion as the angle of inclination of the disk tion force response can be interpreted as a measure of the
decreasef.e., ast increasep This corresponds well with the sound produced during motion. The material seems to play a
common observation of a coin or a dish eventually fallingrole in affecting the intensity and quality of the sound, but
into a pseudosteady type of motion regardless of its initiahot its pitch. With respect to the second feature, the abrupt
conditions when first spunreported experimentally by end to the motion of the disk, we observed friction force
Easwaret al. [6]). At the start of the motion, the “forced responses that support observations by otf&rsf slipping
frequency” observed is related to the nonsteady rising andccurring near the end of motion. The vibrations observed
falling of the disk. The magnitudes of the initial vibrations also support the conjecture by Kessler and O’Réillg] that
decrease asincreases. By the end of the motion, the “forcedvibrations could cause a loss of contact with the surface at
frequency” observed tracks well with as already observed Small angles of inclination, contributing to an abrupt end of
in the pseudosteady motion. In addition, as with the pseuth® motion. The concepts in this deformable model can be
dosteady motion, the natural frequency of the disk is weaklygxPanded upon to include flexibility in the rolling surface.
present in the vibration. Thus, the comments made earlier oifloreover, the methods introduced for prescribing a de-
the interesting features of Euler’s disk raised by Kessler anéPrmed shape for the disk can be used to explore higher

O'Reilly [12] also apply to the study of a typical nonsteady modes of vibration excited in the disk. Carrying out these
motion. improvements may provide additional insight into the de-

tailed mechanism and measure of sound produced during
motion, but the general conclusions gathered from the
IV. CONCLUSION present model are not likely to be affected.

A deformable model of the Euler’s disk problem was de-
veloped by permitting the disk to deform in a prescribed
shape. This approach allows the problem to be treated with This work has been partially supported by the Natural
the techniques of classical analytical mechanics. We atSciences and Engineering Research Council of Canada and
tempted to address two interesting features of the Euler'she Alberta Heritage Scholarship Fund.
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